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Abstract
This work describes a first step towards the creation of an

engineering model for color discriminability as a function of size.
Our approach is to non-uniformly scale CIELAB using data from
crowd-sourced experiments, such as those run on Amazon Turk.
In such experiments, the inevitable variations in viewing condi-
tions reflect the environment many applications must run in. Our
intent is to define discriminability in a way that is robust, on av-
erage, to these conditions. We make no claim that our model de-
scribes color perception with a high degree of precision. Our goal
is to create a useful model for design applications where it is im-
portant to make colors distinct, but for which a small set of highly
distinct colors is inadequate.

Introduction

Figure 1: Problems with color discriminability at smaller sizes.
Here, both Brewer and Tableau swatch sets are easily discrim-
inable at large sizes. However, as the marks grow smaller, their
component colors become increasingly difficult to distinguish.

Most color technologies are defined for targets of 2 or 10
degrees [1]. However, designers of color for digital applications
have targets of many sizes to consider. While it is well understood
that the appearance of color varies significantly with size [5], there
are as yet no practical models to help a practitioner control for
this effect. This paper looks specifically at the problem of dis-
criminability, providing a way to estimate how much separation
(measured in CIE ∆E units) colors must have to be robustly dis-
tinct at different sizes. Our goal is to create a useful model for
design applications where it is important to make colors distinct,
but for which a small set of highly distinct colors is inadequate.

As the size of colored targets becomes smaller, the ability to
distinguish between the color of these targets degrades. This is
especially problematic in fields such as visualization, where the
ability to interpret an image is heavily based on our abilities to
distinguish between marks of different colors and sizes [8]. For
example, in Figure 1, both swatch sets are easily discriminable at
large sizes. However, as the marks grow smaller, their component
colors become increasingly difficult to distinguish. In systems
like Tableau (http://www.tableausoftware.com/), de-
signers have made a conscious effort to address this issue. How-
ever, these colors and adjustments were carefully crafted, relying

heavily on extensive expertise.
In this work, our goal is to provide a quantitative model of

how color discriminability shifts as a function of size, with a spe-
cific emphasis on how discriminability functions at small percep-
tual differences, such as just-noticeable differences (JNDs). We
base our explorations on a series of crowdsourced experiments,
similar to those presented by [anonymous], focusing on gauging
these phenomena for real users in real viewing conditions. In such
experiments, the inevitable variation in viewing conditions reflect
the environment many applications must run in. Our goal is to de-
fine discriminability in a way that is robust, on average, to these
conditions.

This choice represents a direct trade-off: In contrast to other
work in this area [3] we are not attempting to model the mech-
anisms that control how the perceptual system is influenced by
color as a function of size. Instead, by measuring this color/size
phenomena under more realistic circumstances, we hope to derive
findings that can be immediately leveraged in practical design.

In the paper, we describe a way to model discriminability as a
function of size for target sizes in the range 6 degrees to 1

3 degree
of visual angle. Our noticeable difference function, ND(p,s) is
a weighted Euclidean distance in CIELAB space, parameterized
to a threshold p, defined as the percentage of observers who see
two colors separated by that value as different, and by a size s,
specified in degrees of visual angle. For a JND, this threshold
would be 50%, and as CIELAB was specified for 2-degree targets,
this distance would be 1, with equal contributions from L∗, a∗ and
b∗. For practical design under uncontrolled conditions, we find
the required difference, or in our notation, ND(50,2), is closer
to 5.3, with slightly different weightings on L∗, a∗ and b∗. As
the target size shrinks, the ND value increases and the difference
in discriminability along each of the three axis changes unevenly.
For 0.33 degrees, the required difference is closer to 11, but the
weights on the three axes are very different.

Contribution
We performed a set of experiments to evaluate discriminabil-

ity for 11 different target sizes, ranging from 6 degrees to 120‘ of
the visual angle. Using techniques of [anonymous], we create a
noticeable difference function ND(p) for each size s. We then
generalize these results in two ways:

• For a fixed p, estimate ND(p) for an arbitrary size s. This
function takes the form NDp(s) =C+K/s, where K and C
are constants obtained from fitting the data for each of our
11 sizes.

• For a more general formulation, we first estimate ND(p) for
a specific size, then use this to compute ND(p,s).

Early evaluation of these results indicates that, while more work
is needed, they can be useful for determining discriminability as



a function of size.

Related Work
Recent papers by Carter and Silverstein [3, 4] address the

problem of discriminability of small colored targets, focusing on
those in the range of 120 to 7.5 minutes of the visual angle. This
work leverages reaction time data for a set identification tasks to
understand how the bound of immediate discriminability shifts
as a function of size. The resulting formulation communicates
a notion of immediate perceptual discriminability, providing pa-
rameters for scaling color differences in cone space and for ac-
counting for optical scattering between each small mark and the
background as a function of per-cone channel contrast. We are
interested in a larger range of sizes (6◦ to 1

3
◦

are discussed in this
paper), and more subtle differences. However, we do incorporate
aspects of their model in the design of our experiments.

The sCIELAB work of Zhang and Wandell [9] addresses the
problem of evaluating pixel-sized color differences. While an ex-
cellent example of a practical model, its focus is pixels in images
and does not scale to the range of sizes we are interested in.

That ∆E computed as an Euclidean distance in CIELAB
space does not accurately capture color difference is well estab-
lished. Mahy et al’s evaluation of uniform color differences [7]
offers an average value of 2.3 for the JND in CIELAB, in contrast
to its theoretical 1.0. Color difference formulations such as CIE94
and CIEDE2000 include parameters to adjust the JND across the
color space as a function of hue and chroma. Our work currently
assumes uniformity across the space, but this is clearly not true.
It will be part of our future work to incorporate some of the in-
sights from these more recent difference formulations, especially
the contribution of chroma to our calculations.

Fundamental to our approach, is the work by [anonymous],
who have demonstrated that rescaling CIELAB based on crowd
sourced experiments produces useful results. We directly fol-
low their procedure for collecting and evaluating color difference
judgements of samples jittered along the the L∗, a∗, b∗ axes to
create a scaled model of CIELAB for each size tested.

Experiment
To rescale CIELAB as a function of size, we require data that

measures whether two similar colors appear the same or different.
By varying the colors and the differences, we can calculate scaling
factors for the L∗, a∗ and b∗ axes.

Design
We designed our experiments to use Amazon’s Mechanical

Turk (https://www.mturk.com) infrastructure to crowd-
source our experiments. This approach has been validated as
being equivalent to controlled experiments if sufficient partici-
pants are used and care is taken to filter out clearly invalid re-
sponses [6, 10, 2]. In addition, creating a model that is robust to
the variation in viewing conditions inherent in crowdsourcing is
fundamental to our goals.

Participants were shown a series of pairs of squares and
asked to identify whether the pairs were of the same color or dif-
ferent colors by pressing one of two keys. For each pair, one
square was a standard sample, and the color of the second “jit-
tered” square was adjusted by a fixed amount from the color of
the first along a given axis. The position of the jittered square

was randomized for each stimulus. The set of 52 sample col-
ors were selected from a uniform distribution in LCh, reduced to
avoid going out of gamut when jittered. The resulting set is shown
in Figure 2, selected from 6 lightness steps, 18 hue steps and and
3 chroma steps: 0, 25, 50.

Figure 2: The resulting set of sample colors from a uniform dis-
tribution in LCh, selected from 6 lightness steps, 18 hue steps and
and 3 chroma steps: 0, 25, 50.

We ran our study using a total of 4 experiments, each eval-
uating three size sets: 0.33, 0.67, and 1 degree; 0.5, 1.25, and 2
degree; 2, 4, and 6 degrees, and 0.4, 0.8, and 1.625 degrees. We
replicated the 2 degree value because our initial jitter step for 2 de-
grees was too small. In our modeling, we use the results from the
second experiment. In all cases, the stimuli were a fixed distance
apart, measured edge to edge. Participants each saw a subset of
these colors.

The jittering was done uniformly per axis, with each color
adjusted by integer steps, up to ±5 steps per axis. For sizes less
than 2 degrees, the jittered distances were modulated based on the
Carter & Silverstein recommendations, normalized such that the
2-degree square step size equaled 1∆E for all squares less than 2
degrees wide. This helped ensure that we made large enough jitter
steps. Step sizes were linearly interpolated for sizes not sampled
in the Carter & Silverstein numbers. Optical scattering parame-
ters were not included in this model as we could not uniformly
determine whether the difference would result in uniformly posi-
tive or negative contrasts that was agnostic of the constant color.
For sizes greater than 2 degrees, a uniform 1.25∆E step was used.

Participants first were prompted for their demographic infor-
mation. Then they were then given a brief tutorial explaining the
task at hand. Each participant saw 104 trials, 99 experimental ob-
servations and 5 validity trials of drastically different RGB color
(20 or more ∆E difference). There was a 500ms white screen be-
tween trials to alleviate adaptation effects. As is typical in exper-
iments run on Mechanical Turk, we had to replace roughly 15%
of the participants based on our validity criteria. We repeated this
process until we had a complete set of observations for our data.

Method
For each experiment, we analyzed responses from 624 par-

ticipants (245 female, 339 male, 40 declined to state) between 16
and 66 years of age (µ = 33.71,σ = 11.60) with self-reported nor-
mal or corrected-to-normal vision. Each participant saw each of
the 52 stimulus colors twice, with each combination of color dif-
ference (jitter amount × jitter direction × jittered axis) presented
once for each of three sizes. Color × size × color difference was
counterbalanced between participants. This sampling density will
predict discriminability rates for each tested color difference to at
worst ±7.5% with 90% confidence.

To verify the validity of our results, we ran an 9-level AN-



COVA on the discriminability responses for each sample across
all four experiments in the study, treating gender as a covariate
to account for interparticipant variation and size as a between-
subjects factor. We found significant effects of age (F(1,607) =
8.1342, p = .0045) and question order (F(1,50826) = 16.7810,
p < .0001); however, we saw no systematic variation for ei-
ther factor. We also saw significant effects of the fixed color’s
L∗ (F(1,50791) = 1448.323, p < .0001) and b∗ (F(1,50764) =
29.9342, p < .0001) values, but not on the fixed color’s a value
(F(1,50764) = 0.1621, p.6873); however, only L∗ appeared to
have a systematic influence on response patterns – discriminabil-
ity was slightly better for light colors than for dark. Our pri-
mary factors – size (F(10,6741) = 58.2625,p < .0001) and color
difference along L∗ (F(1,50756) = 8301.816, p < .0001), a∗

(F(1,50756) = 7819.245, p < .0001), and b∗ (F(1,50756) =
4974.221, p < .0001) — all had a highly significant effect on
response.

Predicting Discriminability Thresholds

Figure 3: The slope lines for 4 of the sizes we tested (others re-
moved for legibility). The 50% line is marked, the ND50 for each
of L∗, a∗ and b∗ axis is the intercept with this line. The ND50 for
the 4-degree stimulus is indicated.

Based on our data, we can create a parameterized noticeable
difference (ND) as a linear function of distance in CIELAB space
for each size in our study. Our experiments presented two color
patches, a known jitter step apart along either the L∗, a∗ or b∗

axis, and recorded whether observers said they looked the same
or different. We then plotted the jitter step size and the percentage
of the responses that indicated it looked “the same”. That is, given

a distance in CIELAB units between two colors, for each size s,
we can predict what percentage of observers p, reported a visible
difference. This gives:

p =V (s)∗∆C+ e (1)

where V and C are vector functions and e is experimental and
observational error. As in the work of [anonymous], we found a
linear model forced through 0 fit this data well. That is, C is a
step in CIELAB space, and V is a vector of three slopes, which
are different for L∗, a∗, and b∗. This is shown in Figure 3. Table 1
summarizes the slopes data. All values fit with p < 0.0001 except
for ∆b for size 0.33 (p = 0.000189).

Given this simple model from Equation 1, ND(p) = p/V ,
with ND equivalent to the vector ∆C. For example, to compute
the distance vector where 60% of the observers saw a difference,
simply divide 0.6 by V , which will return a vector (∆L,∆a,∆b)
indicating the steps in LAB space that separate two colors with a
60% reliability. Classically, a JND is defined as color difference
where 50% of the observers saw a difference. For a fixed p, we
write NDp, so for a JND, we would use ND50. Now we use this
data to create a model for NDp(s), which is ND for p% reliability
at a given size s. Based on this model, we get the following values
for ND50 for each size as shown in Table 2.

We now use this data to estimate ND(p,s) in two different
ways.

Predicting ND for a particular threshold as a func-
tion of size

Given a fixed p, we want to predict NDp(s), where the sub-
script p indicates a specific ND value for a fixed p, rather than
as a function of p. We achieve this by plotting NDp for different
sizes which is a non-linear function of size as shown in Figure 4
for ND50.

Figure 4: ND50 plotted against size for each of our tested sizes
for each axis (L∗ is gray plus, a∗ is red circle, b∗ is blue square.
Note that for smaller sizes, the three axis are quite different. The
non-linearity as size decreases is much more significant in a∗ and
b∗ than for L∗.

We find a function of 1/size gives us a good fit (Figure 5).
Linear regression creates the coefficients shown in Table 3, all of
which provide a significant fit to the data (R2

L = .849696,pL <
0.0001; R2

a = .942234,pL < 0.0001; R2
b = .970395,pb < 0.0001).

That is, ND50(s) = C50 +K50/s (Remember that this is a vector
equation in L∗, a∗ and b∗).



Table 1: V (s) for each size and axis
Size

Axis 0.333 0.4 0.5 0.667 0.8 1 1.25 1.625 2 4 6
L∗ 0.068 0.069 0.078 0.081 0.090 0.083 0.089 0.085 0.100 0.096 0.090
a∗ 0.051 0.054 0.062 0.067 0.064 0.073 0.073 0.072 0.085 0.091 0.097
b∗ 0.034 0.042 0.050 0.051 0.055 0.061 0.064 0.066 0.073 0.086 0.086

Table 2: ND for p = 50% for each size and axis
Size

Axis 0.333 0.4 0.5 0.667 0.8 1 1.25 1.625 2 4 6
L∗ 7.321 7.267 6.435 6.180 5.531 6.017 5.643 5.903 5.010 5.187 5.574
a∗ 9.901 9.268 8.052 7.429 7.837 6.897 6.821 6.906 5.917 5.488 5.149
b∗ 14.837 12.019 10.101 9.747 9.091 8.197 7.764 7.587 6.831 5.841 5.834

Figure 5: The plot of ND50 for each of the 11 sizes vs. 1/size.

The form of this function makes good sense perceptually.
As size increases, the K/s term goes to zero, leaving a con-
stant ND50(in f inity) of (5.1,5.3,5.3). As size decreases below
1, ND50 increases more rapidly, which matches our observed re-
sults.

Table 3: C and K coefficients for ND50
Axis C50 K50

L∗ 5.07857 0.751199
a∗ 5.33884 1.54136
b∗ 5.34949 2.87127

For different values of p, we also get good fits, but with dif-
ferent coefficients. This provides a two-step model for discrim-
inability as a function of size. First, compute ND(p) for the de-
sired p, then fit this value with an equation of the form:

NDp(s) =Cp +Kp/s. (2)

Generalizing the Model
In the previous section, we created a model of ND(s) for a

fixed p. Now let us formulate ND(p,s). Given ND(p) = p/V (s),
we need to be able to estimate V (s) for an arbitrary size. Based

on the results in the previous section, we would expect to see

V (s) = p/ND(p) = p/(C(p)+K(p)/s) (3)

where C(p) and K(p) are the coefficients in Equation 3, specified
here as functions rather than constants. Figure 6 is a plot of V vs.
size.

Figure 6: The distribution of V(s) vs. size for our data. Gray cross
is L∗, red circle is a∗, blue square is b∗.

Based on Equation 3 we look for a fit to 1/V as a function of
1/s. That is,

1/V (s) = A+B/s (4)

The resulting fit is shown in Figure 7, with the coefficients show in
Table 4. This model also characterizes our data well, providing an
equivalent fit quality to the ND50 fits (R2

L = .849696,pL < 0.0001;
R2

a = .942234,pL < 0.0001; R2
b = .970395,pb < 0.0001).

Table 4: A and B coefficients for Equation 4
Axis A B
L∗ 10.1571 1.5024
a∗ 10.6777 3.08273
b∗ 10.699 5.74253

This gives us a simple specification for the coefficients in
Equation 3, with C(p) = pA and K(p) = pB.



Figure 7: Linear fit to 1/V (s) vs. 1/size

Discussion
To visualize this model, we have used Tableau Software’s

visual analysis system (http://www.tableausoftware.
com).

The slopes for each size, V (s) were computed independently
and read into this workbook as data. We then defined a function,
ND(p), and along with a variable parameter for p. Figure 8 shows
the different NDp(s) lines for p = 50. The shaded band show the
variation in delta L∗, a∗ and b∗ over the range of sizes. Notice
how much wider the band is for b∗ vs. a∗ vs. L∗.

Figure 8: The figure shows the delta value needed for 50% dis-
criminability (ND50) for each axis as a linear model of 1/size.
Colored bands are labeled with the range of delta values for each
axis.

By adjusting p, we see that the lines move up and down,
but the shape remains similar. In Figure 9, we have set p = 35.
Now smaller delta L∗, a∗ and b∗ values are needed to guarantee
35% discriminability. There remains a good linear fit to these
new points, as would be expected. (The bands still show the 50%
range, for comparison)

Another way to visualize these results is to plot color patches
and observe the difference. One challenge with this is that not
only discriminability but overall appearance changes as colors get

Figure 9: Same as Figure 8, but with p = 35.

small. Small stimuli generally appear less colorful. However,
Figure 10 is an attempt to illustrate our results as colors. Both the
large and small patches are stepped according to the parameters
of our algorithm. The question is whether the differences seem
the same independent of size? For comparison, the small patches
are also shown with the same color steps as the large patches.

While we applied the procedures recommended by [anony-
mous] for scaling CIELAB, we did not get the same results for
our 2-degree patches as they did for theirs. They estimated
ND50 = (4,5.3,5.8) and our results are (5,5.9,6.8) for simi-
lar populations (Amazon Turk workers). We can only speculate
about what caused the difference. One possibility is the difficulty
of the task. Our experiment used smaller jitter steps, and therefore
more comparisons looked “the same.” People may have therefore
decided the best strategy was to only mark as different colors that
were very different. We also found that having a range of sizes
made the task harder, and that which sizes were combined had
some effect on the results. A better approach might have been to
use a constant size and more experiments with fewer trials, which
would have been more similar to the [anonymous] study.

Conclusion and Future Work
The work presented in this paper offers a simple model for

adjusting color discriminability as a function of size. While the
results are preliminary, this sort of data-driven modeling shows
strong promise for creating practical results.

This work can be improved by further data collection and
analysis, but our results are simple and promising enough to also
try out in practice. Our data indicates that a minimum step in
CIELAB of between 5 and 6 is what is needed to make two colors
visibly different, which matches well with the intuitions devel-
oped through design practice by the authors. That this increases
somewhat for L∗ as the target shrinks is also expected. However,
changes along the dimensions controlling colorfulness (a∗ and b∗)
must be much larger, matching our experience that small targets
need to be much more colorful to be usefully distinct.

For design purposes, it is much easier to use LCh rather than
the CIELAB axis. But the asymmetric scaling of a∗ and b∗ will
introduces changes in the hue vector with respect to the original
CIELAB specification. Either this will be a feature in that it accu-
rately models perception, or it will cause hue shifts that will need



Figure 10: The large patches are intended to be 2 degree squares,
with one ND50 step in each direction as computed from our for-
mulas. The small patches are 0.5 degrees, and the corresponding
ND50 steps are larger. For comparison, the same color steps are
also shown on the small patches.

compensation. We have already started exploring looking at our
results in this context, which will let us more easily apply them
to some of our real-world design problems. This will help us best
understand what parts of the model need further refinement.
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